Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition

Aditya K Surikuchi | Raquel Fernández | Sandro Pezzelle Institute for Logic, Language and Computation, University of Amsterdam

Visual Storytelling

Input: sequence of images

Task: to generate a textual story consistent with the input

Human-annotated story: We invited lots of friends for a barbeque. The fire pit was very large. We roasted hot dogs right over the flame. Lots of people were happy. And there was a lot of beer too.

Evaluation is challenging: plausibility of several creative stories for a single given image sequence, makes reference-based NLG metrics (e.g., METEOR) inappropriate.

Improvements to TAPM

LLaVA obtains better d_{C} and d_{G} compared to TAPM. So, we test whether we can obtain better results (lower distances), by **replacing TAPM's original language** and vision components with models comparable to those embedded in LLaVA, while **keeping the number of parameters significantly lower**.

With the updated language component, TAPM is on-par with LLaVA in terms of the overall d_{HM} value.

Reference-free Evaluation Metrics

Coherence–RoViST-**C**¹: average probability with which each sentence follows the preceding sentences (*entire prefix*) of the story; range $\in [0, 1]$

Visual grounding–GROOViST²: alignment scores between noun-phrases and image regions (*using CLIP*); penalization of low alignment scores and reweighting using concreteness ratings; normalized and aggregated to range \in [-1, 1]

Repetition–RoViST-N**R**¹: number of co-occurring words between two texts normalized by the total number of words in both texts (*Jaccard Similarity*); for every sentence average of inter- and intra-sentence repetition is computed; range $\in [0, 1]$

Q. Can we combine these metrics to determine how human-like a **model-generated story is?**

We take a human-centric approach and define the quality of modelgenerated stories in terms of their **closeness** to corresponding stories produced by humans, along the three different evaluation dimensions:

Qualitative Analysis

Results using the d_{HM} measure suggest that the stories generated by the bestperforming models—TAPM (+LLAMA 2)⁹ and LLaVA—are very close to human-levels of visual grounding, coherence, and degree of repetition.

abs(**C**[human story] - **C**[model generated story]) =

abs(**G**[human story] - **G**[model generated story]) =

abs(**R**[human story] - **R**[model generated story]) =

Q. How do models perform on the d_{HM} measure?

On the VIST³ test set, we evaluate three models designed and trained for visual storytelling: AREL⁴, GLAC Net⁵, TAPM⁶; and two general-purpose foundation models in a zero-shot manner: BLIP-2⁷ and LLaVA⁸.

Prompt: *(INST]<image>\nWrite a story using exactly five sentences for this image* sequence. Do not use more than five sentences. [/INST]'

We ask human annotators (unrelated to the task) to assess the stories generated by these models against corresponding human-written stories.

Human-annotated story: Our business hosted its winter holiday party at a hotel. The food was served as a buffet. All the young workers sat at one end of the table. The older co-workers sat at the other end of the table. In the end, both young and old co-workers stayed until closing time for the hotel restaurant.

Model-generated story: The first image, a man stands in awe of a beautifully decorated *Christmas tree. The second image captures a lively dinner party, with guests seated* around a table laden with food and wine. The third image shows a bustling restaurant kitchen, where chefs are busy preparing meals. The fourth image reveals a cozy dining room, where a family enjoys a quiet meal together. The final image presents a grand banquet hall, filled with guests and adorned with elegant decorations.

References

¹RoViST: Learning Robust Metrics for Visual Storytelling (Wang et al., NAACL Findings 2022) ²GROOViST: A Metric for Grounding Objects in Visual Storytelling (Surikuchi et al., EMNLP 2023) ³Visual Storytelling (Huang et al., NAACL 2016)

⁴No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling (Wang et al., ACL 2018) ⁵GLAC Net: GLocal Attention Cascading Networks for Multi-image Cued Story Generation (Kim et al., 2018) ⁶Transitional Adaptation of Pretrained Models for Visual Storytelling (Yu et al., CVPR 2021) ⁷BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (Li et al., PMLR 2023)

⁸LLaVA-NeXT: Improved reasoning, OCR, and world knowledge (Liu et al., 2024) ⁹Llama 2: Open Foundation and Fine-Tuned Chat Models (Touvron et al., 2023)

Takeaways

A 'good' story may require more than human-like level of visual grounding, coherence, and repetition.

⁽²⁾ There are several other dimensions of visual story evaluation that need to be considered and explored further.

Topic consistency? overarching narrative?

